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We present a numerical iterative scheme for solving gasdynamic problems by the ascer- 

tainment method suitable for computing uansonic flows past solids of revolution. A short 
description of the numerical procedure is followed by the results of rolllpu:ing flows past 

a sphere, an ellipsoid, a combination of a sphere and a cylinder of varyill;! aspect ratio 
and a combination of a sphere and a cone, for various supercritical values or ‘?e hIach 

number. Mach number level curves constructed illustrate the flow in the local supersonic 

zones. their configuration and change, and the position of the shock waves. 

Numerical methods for analyzing transonic flows in which closed supersonic zones 
appear are only beginning to be developed. Chushkin p] used the method of integral 
correlations to analyze the flow past an ellipsoid of revolution for one particular case. 

namely when the Mach number of rhe incident flow is equal to unity and the influence 
domain is bounded do\instrealn by the limit characteristics. Below we study the possibi- 
lity of computing transonic flows past solids of revolution using the ascertainment method. 
The scheme of implicit differences utilized here is described in detail in @], where it is 

used to solve a simple problem of the Lava1 nozzle. 

1, To apply the ascertainment method we take the equations of unsteady motion of 
a perfect gas in cylindrical coordinates Zy. They can be written in abhreviated form as 

$-+A$-+B+F=O 

Here 2 and F dre vectors (columns) with the fr)Il~)wing colnponents 

(1.1) 
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z = {p, u, u, pp-Y}, F = {xpaSvy-‘,O, 0, 0) 

and the matrices A and B are given by 

xpaa 0 0 
= x-%-i 

0 xpd 0 
A I; 0 ; 

;f 

; ( 

B = x-lp-l 0” f ; 

0 0 u 00 ov 

Pressure p, density p and the speed of sound u are relative to their values in an unper- 

turbed flow. Cylindrical components u and t’ of the velocity vector are referred to the 
speed of sound at infinity. The coordinates z and y and time t are also assumed dimen- 
sionless and x denotes the Poisson adiabatic exponent. 

We formulate the mixed boundary value problem for the initial hyperbolic system 

(1.1) as follows. We prescribe a no-leakage condition at the axis of symmetry and at 
the streamlined solid of revolution y = Y (5) . At infinity the velocity and pressure 

assume their values in unperturbed flow. we can use any,sufficiently reasonable para- 
metric field, as the initial conditions. 

We shall carry out the numerical solution of the problem in new variables ,+ 5 (z, g) 

and rl = tl (5, y) which map the meridional section of the flow onto the interior of a 
unit square. Since we construct a net of constant size, h, in E and h, in rl in the g, rl - 
coordinate system, the coordinate transformation must satisfy certain requirements rela- 
ted to both, the convenience of performing the computations and the required accuracy 

of the numerical solution. 

In the examples quoted below we adopt a polar r’# -coordinate system in the meridi- 

onal zy-plane and assume that 

E = 1 - r-‘R (6), q = q (6) (14 

where R = R (6) is the contour of the streamlined body. 

The numerical scheme is based on replacing the system (1.1) by an equivalent one, 

in which every equation represents the compatibility condition along a special charac- 

teristic surface passing through the line t = con&, E = const. To obtain this scheme 

we left-multiply (1.1) by the following matrix 

xpa sin cp xpacos(p 0 
- %pa sin 0 -xpacoscp 0 

co9 ‘p - sin cp 0 

0 0 i 

where 
sin cp = Ex (fxa + &z)-‘/*, co9 cp = Ev (Exz + Eva)-“* (1.3) 

denote the spatial components of the normal directions to the characteristic surfaces. 
The resulting system of equations is written in the %, rl -variables as follows 

The matrix b appearing here is diagonal and its elements consist of the temporal 

components of the characteristic normals 

L = & + nE, + a (L” + Eva)“* A,, = uEx + UE, - a (Ex2 + E112)“’ 

Ass = A44 = UEx -I- VElI 
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Inequalities Att > 0 and Ass < 0 can always be secured by a suitable choice of 
the functions E (t, y). They reflect the fact that the flow along the coordinate E is 

subsonic. The last two elements of the matrix h change their sign in the field of flow. 

The no -leakage condition at the streamlined body, in particular, implies that 

Ass = A.,, = 0. We can therefore approximate the left-hand sides of the first 
two equations of (1.4) using the four-point implicit scheme discussed in p]; we use the 
six-point scheme @] to approximate the derivatives in t and E of the remaining equa- 

tions of (1.4). Generalizing to the second spatial variable is performed analogously to 

PI. 
For the first two equations of the system (1.4) we have therefore 

2 nt% 
m+*/~,t. + 2;; + z:+t*t + zkt> (m = 0. i. . . . , M-i,t=o, i,..., L) 

where we assume that (3.5) 

Here T is the time interval, while M and L denote the number of intervals in ri, and 
q. Values of the unknown functions at 1 -_ -_1 and 1 = L f 1 are obtained from 
the condition of symmetry. 

Inserting (1.5) and (1.6) into (1.4) we obtain a system of nonlinear equations. To 

solve it we shall use the iterative method given in [3]. Following it exactly we take all 

values from the ( n + 1 )-th layer appearing in the coefficients and the right sides of 
the equations, from the ith iterationSThis yields a linear system for computing the required 
quantities in the ( i + 1 f-th iteration on every ray rf = con&. 

Using (1.2) to choose the functions $ (5, 9) we find, that sin tp and con ‘p are inde- 
pendent of &. It follows therefore that the system of equations on the ray splits into three 
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sets which can be written as follows: 

where 

amtli, x m i- L~,*Xm+1 = fm+‘,, (m=O,l....,M--1) 

aklc,T,_l - 2T, - aklc,T.,,,tl = g,,, 

aklc,S,,_I - 2S, - aklc,S,,,tl = h, fm=O,i,...,M) 

It=(l- 2cck,hll) / (1 + 2ak,h,,), p = (1 + 2ak,M / (1 - 2akA,) 

c= A 33, T = u cos cp - v sin cp, 8 = pp-” 

The boundary conditions for (1.7) are given by 

(U sin cp + v cos (p)O = 0, paf = 1 (1.10) 

while those for (1. 8) and (1.9) are obtained by equating to zero the coefficient c a’ 
m= 0 and m = M. 

by [4] the boundary value problem for systems (1. X) and (1.9) is \\,ell defined. It can 
he solved lising the double sweep method investigated in detail in [S]. 

The boundary value problem (1.7). (1.10) is well defined [4-l if Ih 1 < 1 and 
1~ 1 < 1. ‘Tile latter conditions hold if and only if A,, > 0 and A,, < 0 , and the 
above inequalities become invalid only when TIZ = M, in which case A,, = AZ2 = 0. 
We may therefore expect some loss of accuracy in computations when the values of E 
differ little from unity. Physically rhis is associated with the problem of mapping an 

infinite region into a finite one. and the faci that large distances from the body affect 

the approximation adversely. h,loreover, at E = 1 rhe velocity of rhe flow must be con- 

stant and equal to b/r, ” and this makes the prohlem overdefined. A separate computa- 

tion using the bollndary condition (U sin q~ + v cos (P)M = hf, sin cp ill place of 
the second equation of (1.1(r) has shown, that the results begin to diverge not earlier 

than in the fourth place. Problems (1.7) and (1.10) were solved using the double sweep 

method given in [3]. 

2, The above method was used to compute transonic flows past various axisymmetric 

hod ies. 

Fig. 1 
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Figure la depicts Mach number level curves for a sphere in a flow whose M, 0.8. 

we see that a region of accumulation of the curves M romt appears behind the sphere 
and we assume tilat a shock wave exists 
in this region, Figure 2 depicts the pres- 

sure distribution on the sphere for vari- 

ous values of M,. Here we see that 
the pressure varies almost discontinu- 

ously. It is interesting to note that the 

overall pressure loss in normal shock 
when the computed value of M is as- 

sumed in front of this shock, is nearly -I D f X 

equal to the change of stagnation pres- 
sure at the front and rear points of the 

-0.8 0 -I 0 / t 

Fig. 2 Fig. 3 

sphere. A check that the Bernoulli’s integral is valid gives the maximum error in the 

vicinity of the shock. Although this error increases with the strength of the shock, it 
does not exceed 6 % when M, = 0.9. Crosses appearing on the graphs denote the sonic 
points. 

*7 

/ 2 3 t 

Fig. 4 

The results obtained indicate that the flows with weak shocks can be computed directly 
using nondivergent implicit schemes. 

Figure lb shows the pattern of lines M = con& formed when an ellipsoid of revolution 
with the aspect ratio = 0.5 is streamlined by a flow of jw, = 0.95. The generai flow 
pattern resembles that shown on Fig. la. The shock strength diminishes with increasing 
distance from the body more rapidly, than in the case of a flow past a sphere. 
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Figure 3 gives the fields of flow past a combination of two spheres and a cylinder, at 
M,= 0.8 , for various values of the aspect ratio. Evolution of the flow is well illus- 

trated. On Fig. 3a the body is nearly spherical and a single supersonic zone appears in 
its vicinity. On increasing the length of the cylinder (Fig. 3b) the supersonic zone splits 
into two distinct zones, the second of which is situated downstream and contains a stronger 

shock than the first one, although the shock is still weaker than that appearing in Fig. 3a. 
Figure 3~ depicts the case when the cylindrical part of the body is still longer. Here two 
weak supersonic zones appear which are spaced even further apart. 

Figure 4 shows a flow past a combination of two spheres and a 10% cone, again at 

M, - 0.8. Here the supersonic zone is situated at the rear part of the body. The flow 

first accelerates on the front sphere reaching M =: 0.8 , then slows down to M zz 0.66 
and fIows past the cone with very slowly increasing velocity. 

Computations are also performed for a flow past a 10% spherically truncated cone with 

various ellipsoidal tailpieces. The distribution of parameters along the body up to some 

small distance from the point of attachment of the ellipsoid are practically identical 

with those of the case shown on Fig. 4. 
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In @.] we proposed renouncing the hypothesis of a symmetric tensor of Reynolds stresses 
and an agitated fluid and introducing an equation of conservation of the moment of 
momentum. This equation turns out to be nontrivial if, for example, the pulsed momen- 
tum transfer through a flow cross section depends on the orientation of the cross section 

in space, 
In the present paper we derive the equations of nonsymmetrical mechanics of turbu- 


